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A B S T R A C T

The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar dis-

order and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design

is seen as a scientific enterprise, limited though it remains by the complexity of brain development and

function. Relatively few novel and effective drugs have, however, been developed for many years. The

purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for

psychiatric drug development. The framework is based on a diametrical nature of autism, compared with

psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows

from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that

have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster

vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context,

the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders rep-

resent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments.

Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metab-

olism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants,

antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum dis-

orders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield

insights into treatment mechanisms and the development of new pharmacological therapies, as well as

providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis.
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Lay Summary Consideration of autism and schizophrenia as caused by opposite alterations to brain

development and function leads to novel suggestions for pharmacological treatments.
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INTRODUCTION

The development of effective pharmacological treatments for

human psychiatric and neurological disorders represents one of

the most challenging fields of biology, due mainly to current limi-

tations on our understanding of neurodevelopment, neurological

function and the links of neuroscience with psychiatry. In seeking

to develop new drugs, psychopharmacologists must draw upon

knowledge from a broad and deep range of disciplines, from gen-

etics to biochemistry, neurophysiology, neuroanatomy and neuro-

psychiatry. The majority of new treatments nonetheless fail in

early clinical stages, for reasons that commonly remain unknown,

and most new drugs, such as lithium for bipolar disorder, have

been discovered by accident (e.g. [1]). The only relevant field

missing, apparently, from the intellectual toolkit of psycho-

pharmacology, is evolutionary biology. How might this discipline,

which unites all of the life sciences, be useful in such a context?

The purpose of this article is to describe and evaluate a com-

parative evolutionary framework for pharmacological treatment of

autism spectrum and psychotic-affective spectrum disorders. The

framework is based on Crespi and Badcock’s [2] theory that these

two sets of disorders are generally opposite (diametrical) to one

another, in that autism is a syndrome mediated by underdevelop-

ment of the highly human-evolved social brain (and overde-

veloped nonsocial traits including aspects of perception,

attention and intelligence), while psychotic-affective spectrum

disorders, comprising mainly schizophrenia, bipolar disorder, de-

pression, borderline personality and related conditions, are

mediated by forms of maladaptive overdevelopment of the same

set of social phenotypes (and underdeveloped nonsocial ones).

Autism is regarded as a heterogeneous syndrome (a constellation

of physiological, neurological and psychological phenotypes, sets

of which are commonly found together in a given individual) [3].

Psychotic-affective conditions are a set of disorders that partially

share phenotypes (including the presence of psychosis, and typ-

ically, mood disorder) as well as being strongly correlated genet-

ically and thus overlapping in their genetic underpinnings; these

disorders have discrete names but each represents a more or less

heterogeneous syndrome that grades into one or more of the

related disorders [4–8].

Genetic, morphological, neurological, psychological and other

evidence relevant to the diametric model is most-recently

summarized in Crespi and Go (Table 2 in [9]), Crespi [10, 11],

Crespi et al. [12] and Dinsdale et al. [13]. The diametric structure

of this model is not unique to psychology and psychiatry: at least

four additional sets of human disorders show clear evidence of

diametric etiologies, including osteoarthritis versus osteopor-

osis, cancer versus neurodegeneration and senescence, infec-

tious versus autoimmune disease risks, and anorexia versus

obesity [3, 14–16].

Application of the diametric model to the psychophar-

macologies of autism and psychotic-affective disorders is

predicated on the fact that if the neurophysiological and neuro-

chemical causes and correlates of these disorders are broadly

opposite to one another, then their treatments should be as well.

Robust evaluation of the hypothesis that autism and psychotic-

affective disorders represent opposites, as regards pharmaco-

logical treatments, requires explicit predictions and tests. The

primary predictions addressed here are 4-fold:

(1) Autism and psychotic-affective disorders such as schizo-

phrenia are expected to show opposite alterations to levels

of neurochemicals and pathway activity that mediate their

causes and symptoms, higher than typical in one disorder,

and lower in the other.

(2) Antipsychotic, mood stabilizer and antidepressant

drugs or other treatments should tend to direct

neurodevelopment and function in the ‘autistic’ direction,

toward normality and then, if ‘over-corrected’, toward aut-

ism-related traits and autism risk (Fig. 1). The effects of

such shifts depend upon the magnitude of the perturb-

ation, and the psychological state or ‘starting-point’ of the

individual on a continuum from autism to normality to the

relevant psychotic-affective condition.

(3) Propsychotic and prodepressant drugs or treatments

should tend to decrease autism risk and autism-related

phenotypes, in parallel to the points outlined in (1) above.

(4) Strong correlates of autism, such as epilepsy and highly

focused attention, should represent or indicate foci for

treatments for psychotic-affective disorders, and vice versa

for strong correlates of psychotic-affective disorders.

The rationale and a summary of the evidence regarding these

predictions, in the context of the diametrical model [2, 9, 10], is

illustrated in Fig. 1.

These predictions are subject to a number of important

caveats and other considerations. First, autism, schizophrenia,

depression, bipolar disorder, borderline personality disorder

and psychosis, are each highly heterogeneous disorders as re-

gards their specific proximate causes [10]. As such, each of the

disorders has many possible etiologies at the genetic and
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environmental levels, which converge in each case to a much

smaller set of characteristic neurophysiological, neurodeve-

lopmental, neuroanatomical, cognitive, psychological and finally

psychiatrically diagnostic traits. A primary consequence of this

causal diversity and psychological-behavioral convergence is that

a DSM-based diagnosis of, say, autism or schizophrenia should be

considered as the start of the main, ‘true’ differentially diagnostic

process, to determine the personalized genetic and environmental

causes of the disorder for each individual. These personalized

causes will determine the appropriate pharmacological treatment

(if any) to deploy in each case. Notwithstanding these complexities,

the set of treatments used for autism spectrum disorders should be

broadly diametric, as regards receptor and pathway agonistic or

antagonistic effects, to the treatments used in psychotic-affective

disorders.

Second, psychiatric diagnoses, such as those based on the

DSM, may be subject to certain patterns and degrees of mistakes.

For autism and psychotic-affective disorders, specific sorts of mis-

takes are expected based on the fact that autism spectrum dis-

orders are overwhelmingly diagnosed in childhood, while

psychotic-affective disorders are typically diagnosed in adoles-

cence or adulthood yet often manifest in social, psychological

and other deficits in childhood. As a result, children who are ‘pre-

morbid’ for psychotic-affective conditions (i.e. are expected to

develop them), especially those with relatively penetrant risk fac-

tors such as genomic copy-number variants, are expected to fre-

quently be diagnosed in childhood with autism spectrum

disorders. Such diagnoses can be considered as false positives

[17], and they are observed, in the literature, either as diagnoses of

autism in childhood and, e.g. schizophrenia in adulthood, or as

associations of one copy-number variant (e.g. a deletion at

16p11.2) exclusively with autism, while its reciprocal variant (a

duplication of the same 16p11.2 region) is associated with both

schizophrenia and (as an apparent false positive), autism [18–20].

Evidence regarding premorbidity to schizophrenia diagnosed as

autism spectrum disorders is described in more detail in related

publications [18–20].

Adolescents or young adults with schizophrenia or bipolar dis-

order are expected to be much more rarely diagnosed incorrectly

with autism spectrum disorders, since the positive symptoms of

these two disorders, especially hallucinations, delusions and

mania, are relatively specific. The upshot of this situation is that

some proportion of children or young adolescents diagnosed with

autism actually has a psychotic-affective condition that has yet to

show its diagnostic-specific symptoms because the subject is too

young. The resulting diagnostic asymmetry must be kept in mind

when interpreting the literature. Similar, but more pronounced,

considerations apply to the use of mouse and rat models for,

especially, autism and schizophrenia, because the same social

or task deficits can be interpreted as evidence for effects of each

disorder. In contrast to such ambiguities, such animal models are

highly useful for analyses of the proximate neurological causes of

well-characterized genetic alterations linked with these disorders

among humans.

Third, there are currently no approved, effective pharmacological

treatments available for treating the core symptoms of idiopathic

(cause-unknown) autism, although the atypical antipsychotics

aripiprazole and risperidone are approved by the US FDA for

alleviating irritability, aggression and self-injury in autism [21]. In

contrast, treatments for some single-gene autistic syndromes,

Figure 1. Model of autism and psychotic-affective conditions as diametric (opposite) disorders with diametric treatments and psychopharmacological patterns

related to treatments. Optimal levels of treatment lead to normal, balanced cognition, while ‘too much’ treatment leads to phenotypes typical of the opposite

disorder or disorders. See text for details. Leo Kanner is known for describing autism, and Emil Kraepelin for describing schizophrenia
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including, e.g. Rett, Angelman, Fragile X, TSC1 and TSC2, and

others have been developed and tested and are discussed here.

Given these limitations, a set of phenotypes and symptoms that

are closely associated with autism, including, e.g. reduced em-

pathy [22], macrocephaly (large head size) [23], and high rates of

epilepsy and epileptiform EEGs in association with high neural

excitation to inhibition ratios [24–28], can serve as proxies for

autism spectrum traits modifiable by pharmacological treatment.

Details regarding these proxies, and any caveats that may apply to

their use, are discussed in the relevant sections below. It is im-

portant to bear in mind that these and other phenotypic correlates

of autism each applies in only a subset of cases, given the high

heterogeneity of this disorder.

The predictions of the hypotheses addressed here are evaluated

through discussion of the set of ligand, drug and receptor, path-

way systems, and other forms of treatments and effects, for which

there is sufficient information regarding effects on both autistic

and psychotic-affective diagnoses and phenotypes. The review is

in narrative form, given that data have not previously been col-

lected in the context of the hypothesis under consideration.

RESULTS

Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF), the most prevalent

neurotrophic growth factor in the brain, mediates

neurodevelopment and synaptic plasticity [29–31], with notable

effects on learning and memory through downstream effects of

activation of its receptor TrkB [32].

Levels of BDNF in serum and plasma are higher among sub-

jects with autism than in matched controls, by four meta-analyses

of overlapping datasets [33–36]. In contrast, BDNF levels are

lower in schizophrenia [37], bipolar [38] and depression [39], also

using meta-analyses in each case. BDNF levels are positively

correlated with autism traits, by the Autism Quotient question-

naire, in a non-clinical population [40].

Additional evidence linking higher levels of BDNF with autism

includes: (i) its role in promoting neuronal survival [41], given

larger brain size and reduced neuronal pruning in autism;

(ii) higher BDNF among individuals with Angelman syndrome,

an autistic condition, than among controls [42] but lower levels in

Prader�Willi syndrome, a penetrant cause of affective psychosis

[43, 44]; (3) higher BDNF in fetal brain of mice prenatally exposed

to valproic acid, a well-validated model of autism [45, 46]; and

(4) links of high BDNF levels with epilepsy, involving both

BDNF-induced seizures and higher BDNF after seizures

[47–50], given the strong associations of epilepsy with autism

[24–28, 51]. In contrast, schizophrenia is characterized by reduced

neural synchrony [52–54], apparently in part due to the

antiepileptic effects on NMDA receptor antagonism [55] epilepsy

is primarily found in association with temporal lobe activation,

especially involving the hippocampus, that specifically mediates

hallucinations and delusions [56, 57].

Associations of low BDNF with psychotic-affective disorders

are also supported by (i) a negative correlation of BDNF levels

with psychotic symptoms of schizophrenia [58] and (ii) increased

BDNF after treatment with antipsychotic and antidepressant

drugs [38, 59, 60].

The BDNF-trkB system has been considered as a pharmaco-

logical target for both a hyperactive system in autism [61], and for

underactivity in schizophrenia and depression [62, 63]. Direct

comparisons of the BDNF-trkB system dynamics between autism

and psychotic-affective disorders, which have yet to be conducted,

should provide useful insights into the potential of this

neurotrophin for therapeutic treatment.

PI3K-Akt-mTOR pathway

The PI3K-Akt-mTOR pathway mediates intracellular signaling in

control of the cell cycle across cell and tissue types; as such, it

controls major aspects of brain and body growth, differentiation

and cell turnover [64, 65]. In neurons, this pathway regulates

growth, cell survival, protein synthesis, NMDA-dependent synap-

tic plasticity, and dendrite growth and branching, through activa-

tion by growth factors including BDNF, as well as through

stimulation by NMDA and mGLUR5 receptors (Fig. 2). As such,

this pathway, and the systems with which it interacts (especially

the Wnt, MAPK and ERK pathways), play central roles in

neurodevelopment and neuronal function, through increases ver-

sus decreases in activity as a whole and in its component parts.

Multiple lines of evidence indicate that the PI3K-Akt-mTOR

pathway is overactivated in autism spectrum disorders. The most

direct evidence comes from monogenic, syndromic forms of aut-

ism, many of which are caused by lost or reduced function in

genes, including eIF4E, FMR1, PTEN, NF1, TSC1, TSC2 and

PRKCB1, that negatively regulate the pathway or its subsystems

[66–72] (Fig. 2). Indeed, Hoeffer and Klann [73] noted that ‘al-

though single-gene sources account for only 8–15% of all ASDs,

more than half are involved in direct regulation of either mTor

signaling or translation control’. An important role for

upregulation of the PI3K-Akt-mTOR in autism more generally is

indicated by significant higher pathway activity in cells of individ-

uals with idiopathic autism, than in matched controls [74]. High

pathway activity has also been directly implicated in a suite of

strong correlates of autism, including large brain size [75–77],

epilepsy and high E/I ratios [78, 79], and increased dendritic

growth and branching [80].

Neurodevelopmental and neurophysiological mechanisms

whereby upregulated PI3K-Akt-mTOR may mediate autism spec-

trum disorders include excessive brain growth and neuron num-

bers, increased protein translation at synapses [81, 82], and high

E/I ratios in key neural systems (e.g. [83]). Pharmacological treat-

ments based on inhibition of this pathway have been developed
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and tested in mouse models for Fragile X syndrome [84], eIF4E

dysregulation [85], and TSC1 and TSC2 [86, 87], with amelioration

of autism-associated deficits in all cases. mTOR activity is also

increased in the valproic acid rodent model of autism, with alle-

viation of symptoms by administration of the mTOR antagonist

rapamycin [88].

Whereas autism is characterized by increased PI3K-Akt-mTOR

activity, a substantial body of evidence indicates that this pathway

is downregulated in schizophrenia [71, 89–93]. This evidence de-

rives mainly from studies of the pathway-related effects of particu-

lar schizophrenia risk alleles and genes, analysis of mouse model

knockouts out for pathway activators, and studies of the effects of

schizophrenia treatments on pathway activation [71, 90, 92].

Notably, pharmacological treatment with antipsychotics leads

to increased pathway activation in mouse and cell-based models

of schizophrenia (e.g. [89, 94–99]), and in the latter study, the

antipsychotic haloperidol also increased dendritic spine density

in an mTOR-dependent manner. Electroconvulsive therapy

animal models also show that this treatment increases PI3K-

Akt-mTOR activation [100], suggesting that it contributes to the

efficacy of this approach.

Finally, in contrast to the large brains, elevated protein transla-

tion at synapses, and high dendritic complexity in autism noted

above, schizophrenia is characterized by small brain size [101,

102], decreased dendritic growth and branching [103] as well as

reduced neuronal protein synthesis due to lower mTOR activation

[104]. Schizophrenia thus shows an opposite pattern to autism

with regard to PI3K-Akt-mTOR pathway activation. Studies are

needed that directly compared autism and schizophrenia with

regard to neuronal PI3K-Akt-mTOR activity and its effects on neur-

onal survival, protein synthesis levels and patterns, synaptic plas-

ticity and dendritic spine phenotypes.

Kynurenine pathway

The kynurenine pathway controls the enzymatic conversion to

the amino acid tryptophan to two end products, kynurenic acid

(KYNA) and quinolinic acid (QUIN), both of which are

neuroactive (Fig. 3); this pathway also leads to the production

of nicotinamide adenine dinucleotide (NAD+). Kynurenic acid

functions as an antagonist of the NMDA receptor, with pro-

psychotic neurophysiological and behavioral effects similar to

those of other NMDA antagonists such as ketamine; it also an-

tagonizes the a7 nicotinic acetylcholine (a7nACh) receptor, with

high levels of antagonism leading to deficits in attention,

learning, memory via modulation of synaptic plasticity [105].

QUIN, in contrast, acts as an agonist of the NMDA receptor,

leading in relatively-high concentrations to seizures and

excitotoxicity [106–108].

Variation in activity and products of the kynurenine pathway

mediates both neurodevelopment and neuronal function, and

has been analysed in schizophrenia, autism, and other neuro-

logical conditions [109, 110]. Concentrations of KYNA in cerebro-

spinal fluid are substantially increased among subjects with

schizophrenia, across many studies ([111–114], meta-analysis in

[115]); comparable increases are also found among subjects with

bipolar disorder with (but not without) psychosis, and KYNA

levels are associated directly with psychotic symptoms in both

disorders [105]. Treatment with antipsychotics reduces levels on

KYNA, from studies in rodents [116, 117].

Levels of the NMDA agonist QUIN did not differ between con-

trols and subjects with schizophrenia in two studies of cerebro-

spinal fluid concentrations [118, 119], but QUIN levels were lower

among subjects with schizophrenia in a third study that was based

on immunoreactivity in the hippocampus [120]. The ratio of QUIN

to KYNA, a metric of net alterations to the kynurenic acid pathway,

was measured or inferred as lower in schizophrenia subjects than

in controls by both Kegel et al. [119] and Gos et al. [120], which is

indicative of NMDA antagonism overall. Diverse, convergent evi-

dence thus indicates that psychosis is characterized by high ab-

solute and relative levels of KYNA, as expected given its

antagonist effects on the NMDA receptor. Inhibition or deletion

of the enzyme KAT II, resulting in lower levels of KYNA, is

associated with enhanced cognition and antipsychotic effects in

studies of rodents [111, 121, 122]; this and other means of

lowering levels of KYNA represent active areas of pharmacological

research [105, 114].

Figure 2. Highly simplified depiction of the inter-relationships of the BDNF-

TrkB, NMDA-mGLur5, and PI3K- mTOR systems, that impact upon pathways

highly relevant to autism and psychotic-affective conditions. Arrows refer to

activation, and the blunt tip refers to negative regulation (reducing activation).

NMDA antagonists cause psychological and physiological shifts in the direc-

tion of the phenotypes of psychosis. Dashed line refers to synaptic cell mem-

brane. See text for details
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Study of kynurenic acid metabolism in autism spectrum dis-

orders has proceeded independently of that for schizophrenia.

Across the three independent studies of KYNA levels conducted

thus far, two reported significantly lower levels in subjects with

autism than in controls [123, 124], and one reported no differ-

ences [125]. Levels of QUIN were significantly increased among

autism subjects in two of the three studies that also measured this

metabolite [123, 125], and were not different in Bryn et al. [124].

Ratios of QUIN to KYNA were thus much higher in autism for two

studies [123, 125] but did not differ in a third study [124]. Data

available so far thus provide evidence that levels of KYNA are

decreased, while QUIN and QUIN-to-KYNA ratios are increased,

in autism compared with controls; this is the opposite pattern to

that seen among subjects with schizophrenia, as described above.

Further analyses are needed, however, especially ones that jointly

compare subjects with autism and schizophrenia (and psychosis)

for levels of KYNA and QUIN.

An independent line of evidence concerning kynurenine pathway

alterations in autism comes from analysis of a large genomic copy

number variant deletion at 16p11.2 that includes the gene QRPT,

which codes for the enzyme that metabolizes QUIN [126]. Mouse

knockouts of this gene exhibit higher levels of QUIN and increased

expression of some subunits of the NMDA receptor [127]. Among

humans, deletions of 16p11.2 are strongly associated with autism

and seizures [128–130], and individuals with deletions show lower

QPRT expression, while those with duplications exhibit higher ex-

pression [131]. Haslinger et al. [126] suggest that these findings

implicate high QUIN, and the gene QPRT, in autism spectrum

disorders, based on alterations to cell phenotypes and expression

of ASD-associated genes in a neuronal cell model, as well as the

high QUIN levels in idiopathic autism. Studies of kynurenine path-

way metabolism among individuals with duplications of 16p11.2,

who harbor three copies of the QPRT gene, would be of particular

interest given the association of this duplication with elevated rates

of schizophrenia [132]. More generally, the relative simplicity of

dietary and pharmacological modulation of this pathway should

compel studies that test for associations of KYNA and QUIN

concentrations with levels of autism-related phenotypes, to deter-

mine if and how individualized interventions based on kynurenine

metabolism may be useful.

NMDA receptor antagonist and agonism

The NMDA receptor functions as an ion channel in neurons, with

key roles in synaptic plasticity, learning and memory. Antagonism

of this receptor with sufficient concentrations of neurochemicals

including ketamine, phencyclidine (PCP), dizocilpine (MK-801)

and others (Fig. 2) causes expression of the major cognitive and

neurophysiological symptoms of psychosis [133], as well as

inducing other phenotypes including empathy, euphoria and dis-

sociation [134]. As such, these agents represent key model

pharmacological systems for the study of psychosis and schizo-

phrenia. Additional convergent evidence of a central role for

NMDA glutamate receptor hypofunction in psychotic disorders

includes: (i) associations of schizophrenia risk genes with effects

on this receptor, (ii) receptor subunit dysregulation in

postmortem brain of schizophrenia subjects and in animal

models, (iii) interactions of glutamatergic neurons with GABA-

ergic and dopaminergic neurons in current models of receptor-

system alterations causing psychosis and schizophrenia and

(iv) NMDA receptor activation effects of some antipsychotic

drugs (e.g. [135–137]). Direct agonism of the NMDA receptor is

problematic as therapy due to the risks associated with

overactivation and glutamatergic excitotoxicity, so most research

designed to alleviate its hypofunction has focused on positive

allosteric modulation (lowering of activation threshold without

blockade) of the receptor, as well as on agonism of the mGlur5

receptor, with which it interacts, neurophysiologically, in a posi-

tive manner [138–140]. mGLur5 hypofunction is also characteris-

tic of schizophrenia [141].

The diametrical model of autism and psychosis, applied to

NMDA function, predicts that this receptor should commonly

be hyperactivated in autism, and that its antagonism or negative

allosteric modulation (increase of activation threshold without

blockade) should tend to reduce autism symptoms. Evidence of

NMDA receptor hyperactivation in autism comes from three main

lines of evidence: studies of human subjects with monogenic,

syndromic forms of autism, studies of idiopathic autism and

studies of autism mouse models, mainly knockouts involving

genes that impact glutamatergic activity.

A suite of monogenic forms of autism that symptomatically

resemble Angelman and Rett syndromes has been described in

the context of contextualizing differential diagnostics [142]. All

seven of these disorders that have been investigated for links with

glutamatergic neurotransmission and the NMDA receptor show

some combination of higher receptor activation and high E/I

ratios more broadly; all also show high rates of seizures and aut-

ism or autism spectrum traits (Table 1). For three of these syn-

dromes (Rett, Pitt-Hopkins and MEF2C knockout), symptoms are

Figure 3. Simplified depiction of kynurenic acid pathway metabolism, which

mediates risk and phenotypes of autism and schizophrenia via effects on

NMDA receptor activity levels
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also known to be ameliorated by NMDA antagonists, in humans,

mouse models or both. These findings indicate that a notable

proportion of syndromic autistic conditions involves relatively

high NMDA activity, and that treatment with agents that act as

propsychotics in typical conditions tend to normalize symptoms

in some cases in autism. Increased mGlur5 receptor activity has

also been implicated in autism, most clearly for Fragile X syn-

drome [173]. Treatment of mouse fragile X models with mGlur5

receptor antagonists or negative allosteric modulators have led to

notable symptom reductions (e.g. [174–176]); however, such

benefits have not translated as yet to human trials, for reasons

that remain unclear [177, 178]. As expected under the diametric

model of autism and psychosis in psychopharmacology, some

treatments with mGlur5 antagonists in autistic conditions result

not just in tendencies toward normalization, but also in symp-

toms of psychosis (e.g. [179]) that are indicative of ‘over-

effectiveness’.

In contrast to the largely negative results described above, the

mild NMDA antagonist memantine has shown effectiveness in

improving sociality and reducing repetitive behavior among chil-

dren with idiopathic autism [180–182]. A hyperglutamatergic

model for idiopathic autism was originally described by Fatemi

[183], and recent evidence salient to this theory was described in

Rojas [184], including, e.g. high glutamate levels in brain tissue

and blood (e.g. [185]), and therapeutic benefits from the NMDA

receptor antagonists amantadine and acamprosate, in small

trials.

Mouse autism models based on gene knockouts that impact

glutamatergic activity (and on prenatal valproic acid effects),

show increases in NMDA and/or mGlur5 activity that are reduced

by antagonists and negative allosteric modulators, with conse-

quent reductions in social deficits, repetitive behavior or both;

such effects have been demonstrated for the genes ADCY5

[186], EiF4ebp2 [187], FMR1 [188], IRSp53 [189], Shank2 [190],

Table 1. A set of neurogenetic disorders that resemble Angelman syndrome show a coincidence of

NMDA receptor hyperactivity, high rates of epilepsy, and high rates of autism spectrum disorders and autistic

features

Syndrome and/or

gene affected

NMDA receptor effects Presence of

epilepsy

Presence of autism Comments

Rett syndrome NMDA antagonists ameliorate

symptoms in mouse models

[143, 144] and humans [143,

145]

Seizures common

[146, 147]

ASD common [148, 149]

Pitt-Hopkins

syndrome

NMDA antagonists ameliorate

symptoms in mouse models

[150]

Seizures common

[151]

ASD common [151, 152] Amiable

demeanor

Mowat-Wilson-

syndrome

Increased NMDA activation in

mouse model [153]

Seizures common

[154]

ASD traits high but not

higher than Intellectual

Disability comparison

group; high rates of re-

petitive behavior [155]

Amiable

demeanor

Phelan-McDermid

syndrome

Increased NMDA activation in

mouse model of IB2 gene dele-

tion [156]

Seizures common

[157, 158]

Autism and autistic fea-

tures common [156,

157, 159]

CDKL5 Increased NMDA activation in

mouse model [160]

Seizures common

[160, 161]

Autistic features common

[162–164]

Similar to Rett

syndrome

MEF2C Increased E/I ratio in mouse

model, alleviated by NMDA an-

tagonism [165, 166]

Seizures common

[166, 167]

Autism and autistic fea-

tures common [166,

168]

Angelman

syndrome

Decreased NMDA activation in

mouse model [169]; higher E/I

ratios and seizures due to

reduced GABA-ergic activity [170]

Seizures common

[171]

Autism common [172] Happy

disposition

For some of the disorders, NMDA antagonists (which cause psychotic symptoms in typical individuals) have also been shown to ameliorate these
symptoms. These findings indicate that therapy with drugs that promote psychosis can, for some disorders, reduce symptoms of autism.
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TSC1 [191], as well as for 16p11.2 deletions [192] and prenatal

valproate [193]. The high diversity of autism mouse models

involved in these convergent studies indicate that hyper-

glutamatergic neuronal activity characterizes a considerable sub-

set of autism genes, and perhaps also a high proportion of sub-

jects with idiopathic autism. As for Fragile X syndrome, efficacy of

glutamate system antagonists in translation to humans remains

to be demonstrated; consideration of what components of these

systems differ, neurophysiologically, between mice and humans,

and in autism compared with psychosis, should be useful in pro-

gress toward effective therapies.

Considerable work on the pharmacotherapy for schizophrenia

centers on enhancing NMDA function, either through positive

allosteric modulation of the receptor, or by enhancement of

mGlur5 activation with secondary positive effects on NMDA ac-

tivity [194–196]. Such studies have shown antipsychotic and pro-

cognitive effects in some animal models, although side effects

limit their effectiveness [197]. Positive allosteric modulation of

the glycine-binding site of the NMDA receptor has demonstrated

effectiveness, in animal models of schizophrenia, for improving

cognition [198, 199]; conversely, antagonism of this site has been

suggested as a therapy for autism [200]. Uno and Coyle [201] dis-

cuss the current status of these and other approaches to

upregulating glutamatergic neurotransmission in schizophrenia.

Such studies are especially important because most antipsychotic

drugs work by down-regulating the dopaminergic activity that drives

hallucinations and delusions, while not impacting upon cognitive-

deficit symptoms that stem, in part, from reductions in the NMDA

receptor activity required for effective synaptic plasticity.

Agmatine and the arginine pathway

Agmatine is a compound, formed naturally by the decarboxylation

of the amino acid arginine, that functions as a neurotransmitter. It

acts as a ligand for the NMDA receptor, a2 adrenergic receptors,

imidazoline receptors and neuronal nitrous acid synthase, being

released by Ca++ dependent depolarization [202, 203]. Agmatine

helps to protects cells from glutamate excitotoxicity, and reduces

the incidence and intensity of seizures [202], apparently through

its antagonism of the NMDA receptor [203, 204].

Substantially and significantly higher plasma agmatine has

been reported in schizophrenia or first-episode psychosis sub-

jects than in controls, by the three studies conducted to date

[205–207], and treatment with antipsychotics significantly re-

duces its levels [207]. In a rodent model, high doses of agmatine

cause disrupted prepulse inhibition, a strong phenotype of schizo-

phrenia [208]. This set of findings is concordant with propsychotic

effects of agmatine due to antagonism of the NMDA receptor.

Significantly lower plasma levels of agmatine were reported

among autism subjects than controls in the single study of autism

conducted thus far [209]. Agmatine treatment also rescues autis-

tic behavior in the VPA mouse model of autism, in a manner

comparable to that of two of the other NMDA antagonists, MK-

801 and memantine [210], all of which alleviate social deficits

associated with an overactive NMDA receptor [193]. Such treat-

ments may thus ‘push’ individuals in the direction of psychosis,

but only so far as to more or less normalize their cognition.

These findings on agmatine in relation to autism and schizophre-

nia or psychosis provide support for diametric pharmacological ef-

fects of this compound in these two disorders, involving low versus

high plasma levels, and pro-psychotic, anti-autistic effects mediated

by NMDA antagonism. Further studies are needed to determine the

generality of the patterns, preferably through analyses of autistic and

psychotic subjects using the same protocols.

Endocannabinoid system

The human endocannabinoid system comprises two

endocannabinoids that serve as neurotransmitters (anandamide

and 2-arachidonoylglycerol), the enzyme system that synthesizes

and degrades them, and the cannabinoid receptors CB1 and CB2.

This system exhibits a wide range of physiological and neuro-

logical functions, including effects on social behavior, the

oxytocin system and NMDA receptor activation [211–213].

Anandamide in particular is known to mediate variation in social

behavior, such that higher levels are linked with increased social

approach, social interaction, social play and social reward, from

diverse studies of rodents [214].

Levels of anandamide in blood and cerebrospinal fluid are sig-

nificantly higher among individuals with schizophrenia,

compared with controls, by meta-analysis [215]. In contrast, blood

(serum or plasma) anandamide levels are significantly lower,

compared with controls, among individuals with autism in the

two studies conducted to date [216, 217]. Blockade of the enzyme

that degrades anandamide, leading to higher levels, also reverses

social impairments found in two different autism mouse models,

BTBR and fmr1 knockouts [218]. The mechanisms involved in the

differences between autism and schizophrenia remain unclear,

although they may, as noted above, involve oxytocin signaling

or modulation of NMDA receptor activation.

The exogenous cannabinoids �-9-tetrahydocannabidiol (THC)

and cannadibiol (CBD), derived from the cannabis plant, exert

complex effects on the human endocannabinoid system and rele-

vant aspects of cognition, all of which are evolutionarily novel and

thus challenging to interpret as regards adaptive function in

humans. THC has been reported to increase sociality and em-

pathy in humans, from self-report studies, as well as inducing,

in high doses and susceptible individuals, symptoms of psychosis

(reviews in [214, 219]). In contrast, CBD appears to exert anti-

psychotic effects via mechanisms that remain unclear [220].

Future work on the human endocannabinoid system might use-

fully focus on pharmacological means to modulate levels of

anandamide, and on the mechanisms whereby CBD reduces

symptoms of psychosis. This system also highlights the
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distinction between pharmacological modulation of pathways

with endogenous bodily neurochemicals (such as anandamide),

compared with evolutionarily novel ones produced by plants or in

the laboratory (such as THC, CBD and their synthetic derivatives).

In principle, endogenous neurochemicals should less likely to

exert deleterious side effects, as they are natural components of

an adaptive, evolved neurological system.

MDMA

MDMA (‘ecstasy’) modulates monoaminergic neurotransmission

especially with regard to serotonin, dopamine and norepinephrine

availability at synapses. Its use enhances empathy and prosocial

behavior, and involves increased plasma oxytocin [221–224].

These properties of MDMA have been applied successfully in reduc-

tion of social anxiety among autistic adults [225], and should also be

effective in increasing levels of empathy and sociality among indi-

viduals with autism [226]. Current clinical use focuses on MDMA-

assisted psychotherapy for post-traumatic stress disorder, for which

it is in phase 3 trials as of early 2019 [227].

Under the supposition that MDMA may serve as a useful treat-

ment for autism due to its prosocial effects, it would be predicted to

increase psychosis-related phenotypes. Numerous reports describe

psychosis and psychotic episodes associated with MDMA use [228–

232], and Duman et al. [233] reported that MDMA and cannabis use

interact additively in elevation of subclinical psychotic trait scores.

However, given that most MDMA users commonly use various

other psychoactive drugs, it remains unclear to what degree

MDMA in particular is involved in these cases and effects [234].

Antipsychotic treatments eliciting autism-related traits

The diametric theory for autism and psychosis predicts that anti-

psychotic treatments should exert effects that direct neurological

and psychological systems in the direction of autistic phenotypes.

As such, antipsychotic treatments should both normalize aspects

of cognition and, if their effects are stronger, generate autism-

related traits. Evidence regarding such effects comes from four

main lines of evidence: (i) the induction of seizures by antipsych-

otic drugs among individuals with psychosis; (ii) the induction of

psychosis by anticonvulsant (antiepileptic) drugs among individ-

uals with epilepsy; (iii) the success of electroconvulsive therapy

(ECT) for psychosis and depression; and (iv) the induction of

autism-related traits, in the form of obsessive-compulsive behav-

iors by antipsychotic drugs. The former line of evidence are

predicated on the high comorbidity of idiopathic autism with epi-

lepsy noted above, such that coincidence rates range from�15 to

50% [24–28]. High rates of epilepsy are also found in syndromic

forms of autism, as shown, e.g. in Table 1, and high rates of sub-

clinical autistic traits are reported among individuals with epi-

lepsy [26, 235].

Antipsychotic drugs are known to induce seizures in a dose-

dependent manner, as well as causing epileptiform EEGs [236–

238]. The mechanisms of such effects remain unclear, but they

may involve alterations to dopaminergic, cholinergic or inhibitory

GABAergic neurotransmission by antipsychotics; reductions in

antipsychotic-induced seizures especially by valproic acid, which

elevates levels of GABA, suggest that this neurotransmitter, which

works mainly in opposition to the excitatory effects of glutamate,

plays an important role [239]. From the diametric theory evaluated

here, antipsychotic drugs reduce the threshold for seizures in the

context of elevating ratios of excitatory to inhibitory neurotrans-

mission, especially involving the NMDA receptor, generating this

autism-associated trait.

The converse to antipsychotic induction of epilepsy among

subjects with psychosis, the induction of psychosis by anticonvul-

sants among individuals with epilepsy, also represents a

well-known phenomenon [240], especially in the context of the

so-called ‘forced normalization’. This term was coined in the

1950s for the association of psychosis onset with normalization

of EEG findings, such that epilepsy and psychosis exhibit an in-

verse, antagonistic relationship [241–243]. Krishnamoorthy et al.

[241] suggested that forced normalization was caused by changes

to NMDA receptor activation, from high (associated with epi-

lepsy) to low (associated with psychosis), with changes to this

receptor potentiated by drug-induced GABAergic alterations; they

also note that ‘anticonvulsants that increase GABA levels are

associated with a psychopathological state in up to 10% of pa-

tients, characterized by mood changes, agitation, and paranoid

psychotic symptoms’. Consideration of forced normalization in

the context of the diametrical theory may help to clarify its causes

and identify individualized risk factors and levels associated with

position along a spectrum from autism, to normality, to psychosis.

ECT treatment, an effective therapy for otherwise treatment-

resistant schizophrenia and severe depression despite its contro-

versial nature [244], represents artificial induction of generalized

seizures. As such, it can be considered as imposition of an autism-

related brain activation state, with consequent changes in brain

gene expression and neurological phenotypes that are predicted,

by the theory addressed here, to be similar to those found in aut-

ism. Rosenquist et al. [245] noted that, given the ameliorative ef-

fects of ECT on psychotic states that are caused by NMDA

blockade (with PCP, amphetamine, or other agents), as well as

idiopathic and schizophrenia-associated psychosis, this treat-

ment can be regarded as effective against psychosis in particular

rather than schizophrenia in general. ECT apparently exerts its

effects at least in part through changes in the glutamate-GABA

system; in depression, beneficial effects also appear to be

associated with normalization of glutamatergic neurotransmis-

sion, from studies of rodents [246, 247]. In both schizophrenia

and depression, the mechanism of ECT involves increased levels

of BDNF [49, 248–250], as found typically in subjects with autism

as described above. These findings as regards effects on the
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glutamatergic system, and BDNF increases, are also supported by

changes in gene expression following electroconvulsive treatment

in rats [251]. Taken together, these diverse results are consistent

with autism-related alterations to brain neurochemistry and syn-

aptic activity following ECT; analyses that test directly for such

effects, across many genes, would provide further evaluation of

this hypothesis.

Finally, one of the most curious and puzzling side effects of

some antipsychotics is the emergence after treatment of symp-

toms of obsessive compulsive behaviors and disorder, among

patients with schizophrenia [252, 253]. This phenomenon is of

interest given the strong overlap of autism and autism-related

traits with obsessive compulsive behaviors and disorder [254–

256], and the fact that OCD-related behaviors commonly include

ordering, extreme neatness, counting and repetitive actions that

are characteristic of the autism spectrum. As described by the

sociologist Joan Donovan, from when she worked in group homes

for patients with mental illness:

Many of the psychiatrists in the area were fond of prescribing
clozaril/clozapine, a “drug of last resort.” As counselors, we were
told a lot about this drug because the side effects (reduced white
blood cells) could be fatal.

As more clients began taking it, I noticed some consistent
changes in their behavior. They became far more interested in
making sure they were taking their meds regularly, would attend
day programs, appointments, or work more frequently. As well,
they would spend lots of time organizing their rooms.
Counselors were also responsible for doing periodic checks for
cleanliness and hazards. Clozaril patients often prepared for the
inspection with great care: lining books on shelves by size and
color, stacking food in the pantry or fridge in order of size,
hanging their clothing or putting it in drawers sorted by type.
Some became very focused on one or two niche subjects (art,
music, books, film) and would seek out and collect these items
by a single artist or author. As you can imagine, watching
someone with schizophrenia undergo this transformation was
promising, especially because the hallucinations disappeared
along with the ego.

Over time though, the side effects of clozaril took their toll . . .

and some could no longer tolerate it. Once off the meds, they
returned to their normal disorganization and isolation.

Might such effects emerge, in part, as a result of autistic-trait

induction?

Prenatal and environmental drugs affecting risks of autism

and psychotic-affective disorders

By the hypothesis evaluated here, antipsychotic and antidepres-

sant drugs are expected to direct cognition toward autism spec-

trum phenotypes, during both postnatal stages and prenatal

development. Prenatal effects are especially likely as regards aut-

ism risk, given that this condition is typically present from birth

and centrally involves altered early neurodevelopment.

Hadjikhani [257] suggested that SSRI use during pregnancy

mediates increased risk of autism, based especially on well-

replicated evidence of high platelet serotonin in autistic children.

Recent meta-analyses have supported this supposition, with �2-

fold higher rates of autism among children born to mothers who

took SSRIs during pregnancy [258, 259]. Prenatal SSRI use influ-

ences aspects of human brain structural development [260] and

language acquisition [261], but the mechanisms of apparent SSRI

impacts on autism risk remain unclear.

Effects of prenatal antipsychotic use during pregnancy on aut-

ism risk are largely unknown, due to a paucity of relevant quality

data [262, 263]; one study [264] reported increased head circum-

ference, an autism-associated trait, in neonates prenatally

exposed to the antipsychotics olanzapine and/or clozapine, but

birth weight and length, which are also commonly higher in aut-

ism, were not affected.

Valproic acid, which is prescribed for mania in bipolar disorder,

as an adjunctive treatment (secondary, along with antipsychotics)

in schizophrenia, as well as for epilepsy, is a well-established risk

factor for autism when given prenatally, and indeed it has

been developed into an animal model of autism in this context

[46, 265, 266]. Prenatal valproic acid induces local cortical

hyperconnectivity and hyper-neuronal excitability, both strong

neural correlates of autism [267, 268]. In adults, valproate treat-

ment also ‘reopens’ a developmental critical period for the devel-

opment of absolute pitch [269], another autism-enhanced trait

(review in [270]) and one that shows major deficits in subjects

with schizophrenia [271].

Prenatal effects on risk of autism and other disorders can also

be mediated by pharmacological agents present environmentally,

as in drinking water, given that many such drugs persist in aquatic

systems [272]. As evidence of such effects, fathead minnows

exposed to high but environmentally-realistic concentrations of

the drugs fluoxetine, venlafaxine and carbamazepine showed

gene-expression changes that were uniquely enriched for autism

risk genes [273, 274]. The potential for impacts on humans of

drinking water pharmacological exposures is indicated by studies

showing inverse associations of natural geographic variation in

levels of lithium in drinking water with rates of depressive and

psychotic symptoms [275, 276].

DISCUSSION

I have described and evaluated a set of hypotheses predicated on a

diametric structure to autism spectrum versus psychotic-affective

spectrum conditions, which predicts that pharmacological treat-

ments for each set of disorders should likewise be diametric. A

large set of diametric psychopharmacological patterns emerged

from the analyses, with regard to the pathways involving BDNF,

PI3K, the NMDA and mGlur5 receptors, kynurenine, agmatine,

the endocannabinoid anandamide, epilepsy and electroconvul-

sive therapy. The main results, and consequent suggestions for
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Table 2. Overview of main neurological and pharmacological systems discussed here, with reference to

autism and psychotic-affective disorders

Pharmacological

agent, system or

therapy

Functions Relevance in aut-

ism spectrum

disorders

Relevance in psych-

otic-affective spec-

trum disorders

Implications for research

and treatment

Brain derived

neurotrophic

factor

Mediates

neurodevelopment,

learning and memory,

via growth and other

effects

Elevated compared

with controls on

average

Reduced compared

with controls on

average

Test levels; modify recep-

tor activation

pharmacologically

PI3K-Akt-mTOR

pathway

Mediates cell growth and

replication across many

tissues, including brain

Higher activity

compared with

controls on

average

Lower activity

compared with con-

trols on average, for

schizophrenia

Quantify activity levels;

modify pharmacologic-

ally; effects systematic

across body

Kynurenine

pathway

Controls metabolism of

tryptophan; affects

NMDA receptor activity

Some evidence that

kynurenic acid

level is lower,

quinolinic acid

level is higher, on

average

Some evidence that

kynurenic acid level

is higher, quinolinic

acid level is lower,

on average, in

schizophrenia

More data needed; test

levels of metabolites; re-

late to NMDA activity,

EEG excitation/inhib-

ition ratios

NMDA receptor

antagonism and

agonism

Major neurotransmission

system with diverse ef-

fects on cognition,

learning and memory;

mediates seizures

Elevated NMDA ac-

tivity and seizures

in many cases of

autism

Psychosis caused by

blockade of NMDA

receptor;

hypofunction may

also degrade

cognition

More data needed on

NMDA activity and

function in idiopathic

autism; negative

allosteric

(activation too high) or

psychosis (activation

blocked)

modulation of NMDA re-

ceptors may be useful

in some cases of

autism

Agmatine and ar-

ginine pathway

Agmatine acts as neuro-

transmitter that antag-

onizes NMDA receptor

Lower levels of

agmatine in aut-

ism, on average

Higher levels of

agmatine in schizo-

phrenia and psych-

osis, on average

More data needed; test

levels; diet can alter

levels in blood

Endocannabinoid

pathway; levels

of anandamide

Anandamide mediates so-

cial behavior and many

other physiological and

neurological phenotypes

Lower levels of

anandamide in

autism, on

average

Higher levels of

anandamide in

schizophrenia, on

average

More data needed; test

levels; modify

pharmacologically

MDMA (’ecstasy’) Modulates serotoninergic,

dopaminergic and

norepinephrinergic

neurotransmission

Data suggests en-

hancement of em-

pathy and

reduction in social

anxiety; possible

benefits in autism

Anecdotal data sug-

gests may precipita-

tepsychotic episodes,

in vulnerable

individuals

More data needed; may

be useful in autism in

conjunction with psy-

chological therapy

Antipsychotic ther-

apy involving or

eliciting autism

traits

Antipsychotic drugs in-

crease risk of seizures;

electroconvulsive ther-

apy induces seizures

Seizures and high

excitation/inhib-

ition ratios com-

mon in autism

Seizures may make in-

dividuals with schizo-

phrenia or

depression ‘more

autistic’,

neurochemically

Determine neurochemical

mechanisms of electro-

convulsive treatment

(continued)
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future work, are summarized in Table 2. These findings suggest

new avenues for therapy in both autism and psychotic-affective

conditions, provided that differential diagnoses based on the rele-

vant neurochemical, pathway or ligand/receptor system indicate

that it is warranted in any particular subject. The hypothesis

evaluated here also makes extensive predictions regarding neuro-

chemical levels and pathway activation patterns in autism

compared with psychotic-affective conditions, in that such levels

and patterns should commonly show diametric, opposite effects.

As such, this work can also help to guide future data collection on

other psychopharmacological systems, such as amphetamines

and other stimulants (e.g. methylphenidate), which are com-

monly prescribed for autism [277] and can induce psychosis

(e.g. [278]). Most generally, a useful finding from autism regarding

some effect will thus immediately suggest that the same pheno-

type be investigated in, say, schizophrenia and vice versa.

The primary limitations of this study include: (i) the incomplete

amount of relevant information available for some disorders, for

some neurochemicals, such that further data, and meta-analyses,

are required for robust inference; (ii) the fact that very few studies

have directly compared autism with schizophrenia or other psych-

otic-affective disorders, with regard to neurochemicals, pathway

activation, or psychopharmacological effects, (iii) the high etiolo-

gical and phenotypic heterogeneities of the disorders involved,

which means that any given case of autism, or schizophrenia,

may have quite different causes than another, and (iv) the pres-

ence of contradictory evidence, such as anticonvulsant use for

some psychotic-affective disorders, antipsychotic use for some

symptoms of autism (such as irritability and aggression) [21],

and a negative genetic correlation of autism with localized epi-

lepsy [279]. The former two limitations can be alleviated by target-

ing data collection toward key systems and neurochemicals, as

noted above and in Table 2. Effects of the third limitation can be

reduced through the realization that mental disorders require

personalized treatments with regard to psychopharmacology

and other therapeutic approaches, that can only be realized

through development of protocols for systematic differential

diagnoses of causes rather than just disorders themselves. This

article serves as a first step toward this goal, by demonstrating the

wide range of etiological factors that may be involved, in the con-

text of reciprocal illumination between autism and psychotic-af-

fective disorders. Finally, this article does not consider structural

aspects of brain development, which are mediated by neurochem-

icals but in ways that are not sufficiently understood as yet for

meaningful comparisons of autism with psychotic-affective

disorders.

In the context of therapy, diametric effects on autism and psych-

otic-affective disorder etiologies also extend to protection from

disorders in high risk individuals, given that some correlates of

autism, e.g. effects of high birth weight [280], effects of the

dup22q11.2 CNV [281], effects of congenital blindness [282,

283], and effects of a high non-verbal relative to verbal IQ [284]

are known to protect against schizophrenia; might more malle-

able autism-associated factors, such as enhanced sensory focus

and abilities, high spatial abilities such as on the embedded fig-

ures test, low imagination and highly focused attention exert simi-

lar protection among individuals at high risk of schizophrenia? By

similar mechanisms, schizophrenia symptoms could also be

alleviated by targeted enhancement of ‘autistic’ traits, such as

high sensory abilities. For example, training of people with schizo-

phrenia to enhance sensory acuities, which are generally higher in

autism but reduced in schizophrenia (see [285]), has been shown

to increase both sensory skills and aspects of cognition [286].

Conversely to these effects, prevention or alleviation of autistic

traits may usefully focus on enhancing imagination [287],

reducing extreme attentional focus [288], promoting metaphoric

verbal skills over non-verbal abilities, fostering reduction of sen-

sory acuity focus, and in general promoting interventions that

direct phenotypes in the general ‘direction’ of psychosis, but with

a target zone in the typical cognition range. As for pharmaco-

logical treatments, such approaches must be highly personalized

to each individual’s neurological, psychological and physiological

makeup, through extensive testing prior to treatment strategy de-

velopment. Doing so requires a fundamental change in

Table 2. Continued

Pharmacological

agent, system or

therapy

Functions Relevance in aut-

ism spectrum

disorders

Relevance in psych-

otic-affective spec-

trum disorders

Implications for research

and treatment

Prenatal and envir-

onmental drugs

Drugs given in pregnancy,

or found in environ-

ment; are evolutionarily

novel

Prenatal antidepres-

sants and anti-

psychotics may

slightly increase

relative risk of

autism

Any drugs developed

to alleviate autism

may have

propsychotic effects

prenatally

More data needed

See text for details and citations.
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psychiatric mind-set, because designations of autism, or schizo-

phrenia, become, under this paradigm, only starting points for

differential diagnosis of their highly individualized causes and

treatments.

Conflict of interest: None declared.
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209. Esnafoglu E, İrende İ. Decreased plasma agmatine levels in autistic sub-

jects. J Neural Transm 2018;125:735–40.

210. Kang J, Kim E. Suppression of NMDA receptor function in mice prenatally

exposed to valproic acid improves social deficits and repetitive behaviors.

Front Mol Neurosci 2015;8:17.

211. Wei D, Lee D, Cox CD et al. Endocannabinoid signaling mediates oxyto-

cin-driven social reward. Proc Natl Acad Sci USA 2015: 112:14084–9
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